Take Home Final

APAM 4990 (2010)

In the gyrokinetic units of $\rho_s(\equiv \sqrt{\tau}\rho_i)$ and Ω_i^{-1} for length and time, respectively, the governing gyrokinetic Vlasov equation for a finite- β plasma in the limit of $k_\perp^2 \rho_i^2 \ll 1$ can be written as

$$\frac{dF_{\alpha}}{dt} \equiv \frac{\partial F_{\alpha}}{\partial t} + v_{\parallel} \hat{\mathbf{b}} \cdot \frac{\partial F_{\alpha}}{\partial \mathbf{x}} + \mathbf{E}^{L} \times \hat{\mathbf{b}}_{0} \cdot \frac{\partial F_{\alpha}}{\partial \mathbf{x}} + s_{\alpha} v_{t\alpha}^{2} (\mathbf{E}^{L} \cdot \hat{\mathbf{b}} + E_{\parallel}^{T}) \frac{\partial F_{\alpha}}{\partial v_{\parallel}} = 0, \tag{1}$$

where $\tau \equiv T_e/T_i$, α denotes species, $v_{te}^2 = m_i/m_e$, $v_{ti}^2 = 1/\tau$, $s_e = -1$, $s_i = \tau$,

$$\hat{\mathbf{b}} \equiv \hat{\mathbf{b}}_0 + \frac{\delta \mathbf{B}}{B_0} = \frac{\mathbf{B_0}}{B_0} + \nabla A_{\parallel} \times \hat{\mathbf{b}}_0, \tag{2}$$

$$\mathbf{E}^{L} = -\nabla \phi, \qquad E_{\parallel}^{T} = -\frac{\partial A_{\parallel}}{\partial t}, \tag{3}$$

the superscripts L(ongitudinal) and T(ranseverse) denote the vector decomposition relative to the direction of wave propagation and the subscript \parallel indicates the direction parallel to the external magnetic field. The gyrokinetic Poisson's equation for $k_{\perp}^2 \rho_i^2 \ll 1$ can be simplified as

$$\nabla_{\perp}^2 \phi = \int (F_e - F_i) dv_{\parallel} d\mu, \tag{4}$$

where the electrostatic potential ϕ is normalized by T_e/e , $\int F_{0\alpha} dv_{\parallel} d\mu = 1$ and $\mu \equiv v_{\perp}^2/2$. Ampere's law then becomes

$$\nabla^2 A_{\parallel} = \beta \int v_{\parallel} (F_e - F_i) dv_{\parallel} d\mu, \tag{5}$$

where the vector potential $\bf A}$ is normalized by cT_e/ec_s , $\beta \equiv c_s^2/v_A^2$, $v_A \equiv c\lambda_D/\rho_s$ is the Alfvén speed, and λ_D is the electron Debye length. [Note that the ion acoustic speed $c_s(\equiv \rho_s\Omega_i)$ is unity in the gyrokinetic unit.] Equations (1) - (5) are the so-called electromagnetic Darwin model, when the transverese induction electric field, $\partial {\bf E}^T/\partial t$, is neglected in Ampere's law. This is a quasineutral system without the space charge waves By setting $A_{\parallel}=0$, one recovers the electrostatic gyrokinetic Vlasov-Poisson system, discussed earlier in the class.

1) Show that the linearized Eq. (1), with the ansartz of $exp(ik_{\parallel}v_{\parallel}-i\omega t)$ and the cold plasma response of $k_{\parallel}v_{\parallel}/\omega\ll 1$, gives rise to the Alfven normal modes of

$$\omega^2 = \frac{k_{\parallel}^2 v_A^2}{1 + k^2 \delta_e^2} = \frac{\omega_H^2}{1 + 1/k^2 \delta_e^2},\tag{6}$$

where

$$\delta_e = c/\omega_{pe} = \rho_s \sqrt{m_e/m_i \beta} \tag{7}$$

is the electron skin depth and

$$\omega_H \equiv rac{k_\parallel}{k_\perp} \sqrt{rac{m_i}{m_e}}$$

is the shear-Alfven mode in the electrostatic limit. For the warm electron response of $\omega/k_\parallel v_\parallel \ll 1$, the Alfven modes take the form of

$$\omega^2 = k_{\parallel}^2 v_A^2 (1 + k_{\perp}^2).$$

2) Show also that the energy conservation of this system of equations can be expressed as

$$\frac{1}{2}\frac{d}{dt}\left\langle \int \frac{v_{\parallel}^{2} + v_{\perp}^{2}}{v_{te}^{2}} F_{e} dv_{\parallel} d\mu + \int \frac{v_{\parallel}^{2} + v_{\perp}^{2}}{\tau v_{ti}^{2}} F_{i} dv_{\parallel} d\mu + |\nabla_{\perp} \phi|^{2} + \frac{1}{\beta} |\nabla A_{\parallel}|^{2} \right\rangle = 0, \tag{8}$$

where $<\cdots>$ is the spatial average.